Programme Specification

Programme title: MSc Bioinformatics

<table>
<thead>
<tr>
<th>Academic Year:</th>
<th>2019-20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree Awarding Body:</td>
<td>University of Bradford</td>
</tr>
<tr>
<td>Partner(s), delivery organisation or support provider (if appropriate):</td>
<td>N/A</td>
</tr>
<tr>
<td>Final and interim award(s):</td>
<td>[Framework for Higher Education Qualifications (FHEQ) level 7] MSc Postgraduate Diploma Postgraduate Certificate</td>
</tr>
<tr>
<td>Programme accredited by (if appropriate):</td>
<td>N/A</td>
</tr>
<tr>
<td>Programme duration:</td>
<td>1 year full time</td>
</tr>
<tr>
<td>QAA Subject benchmark statement(s):</td>
<td>N/A</td>
</tr>
<tr>
<td>Date last confirmed and/or minor modification approved by Faculty Board</td>
<td>June 2019</td>
</tr>
</tbody>
</table>

Please note: This programme specification has been published in advance of the academic year to which it applies. Every effort has been made to ensure that the information is accurate at the time of publication, but changes may occur given the interval between publishing and commencement of teaching. Any change which impacts the terms and conditions of an applicant's offer will be communicated to them. Upon commencement of the programme, students will receive further detail about their course and any minor changes will be discussed and/or communicated at this point.

Introduction

Bioinformatics is the study of biological systems using mathematical and statistical analysis with the aid of computer science. New and emerging informatics techniques are increasingly being used to process large data sets, obtained from a wide range of genomic, proteomic and metabolomic investigations, to determine trends and patterns in scientific information, both in healthy and diseased states.

The MSc Bioinformatics programme at Bradford has been designed to equip students with the scientific knowledge and the practical skills necessary to enter the employment market in a number of specialist areas of Bioscience, both in the public and the private sectors, and in environments aimed at improving human health across the world in the 21st century. Bioinformaticians are currently in high demand in employment industries allied to hospitals, universities, healthcare and diagnostics laboratories, as well as those affiliated to government and other institutions.
The Bioinformatics programme at Bradford combines the theoretical knowledge in molecular biology with a practical training in advanced experimental techniques to provide a sound understanding of the commonly used data acquisition methods in a broad range of investigative scenarios. A detailed training in data acquisition is also coupled to modules that are designed to provide a specialised training in the principles of bioinformatics before going on to the study some of the advanced systems that are frequently used in large-scale data mining and processing, including programming and scripting via command line and the Galaxy interface.

An important feature of the programme is the opportunity to gain practical experience in a wide range of experimental techniques in a progressive and cumulative manner throughout the academic year. The practical training is delivered alongside the theoretical content to provide the contextual relevance to the specific laboratory sessions and workshops. Both the taught and the practical elements of the course are delivered in an environment of current hypotheses rather than certainty, and thus highlight the nature of the natural variation encountered in new empirical data generated in a broad range of healthcare scenarios in different international settings.

A key component of the programme is the 15-week-long laboratory research project that occupies most of the second half of the academic year. The start of the research project is prefaced with a generic training period that incorporates a range of key transferrable skills such as literature searching, health and safety training and project planning. The research project itself offers an extended period of specialist training in research methods and experimental design. This is coupled with training in the use of appropriate statistical methods to enable a detailed analysis of the research data, and is followed by guidance on the interpretation and contextualisation of the experimental findings.

Programme Aims

The programme is intended to:

- Develop a systematic understanding of knowledge and critical awareness of selected topics that are of current and future importance to national and international healthcare issues.
- Enhance a conceptual understanding that enables students to critically evaluate current research and advanced scholarship in bioinformatics.
- Develop an understanding of the applications of research techniques to different areas of Bioinformatics research that aims to improve health and wellbeing.
- Enable self-direction and originality in tackling and solving problems, and in planning and implementing tasks at a professional or equivalent level.
- Enable critical evaluation of methodologies and, where appropriate, to propose new hypotheses.
- Develop communication of ideas and experimental results, together with appropriate conclusions, to specialist and non-specialist audiences to advance understanding and effective management of existing and future challenges worldwide.
- Advance knowledge and understanding, along with new and transferable skills, requiring the exercise of initiative, personal responsibility and decision-making in complex and unpredictable situations relevant to employment and general healthcare management in hospitals and other organisations.
Programme Learning Outcomes

To be eligible for the award of Postgraduate Certificate at FHEQ level 7, students will be able to:

LO1 Demonstrate a systematic understanding of current genomic technologies and 'Omics' techniques, and be able to discuss their interpretation and application in key areas of biosciences and healthcare.

LO2 Demonstrate a comprehensive and systematic understanding of the interdisciplinary nature of the approaches required in advancing medical knowledge and understanding of the processes and biological mechanisms.

LO3 Demonstrate a comprehensive understanding of core experimental competencies relevant to Bioinformatics, including the fundamental principles of bioinformatics and the Galaxy interface.

Additionally, to be eligible for the award of Postgraduate Diploma at FHEQ level 7, students will be able to:

LO4 Use detailed literature searching methods and strategies to critically evaluate and critique existing experimental methods currently in use for the investigation of relevant areas of bioinformatics.

LO5 Demonstrate an understanding of the importance of ethical and practical issues relating to laboratory investigations of living systems in a responsible, safe and ethical manner to ensure that professional judgement is exercised in complex and unpredictable situations.

LO6 Demonstrate application of professional standards of Health and Safety Policies, Good Laboratory Practice and Control of Substances Hazardous to Health to ensure competency at using equipment, experimental methods and procedures appropriate to Bioinformatics.

LO7 Prepare, process and interpret data, using advanced qualitative and quantitative techniques, statistical programmes, spreadsheets and programmes for presenting data visually.

LO8 Communicate effectively to specialists and non-specialists.

LO9 Plan, design and undertake a significant research project autonomously, which may involve primary or secondary data (for example from a survey database).

LO10 Report the findings in an interim project report or a scientific publication.

Additionally, to be eligible for the award of Degree of Master at FHEQ level 7, students will be able to:

LO11 Suggest new hypotheses to explore new and novel lines of inquiry at a high scholarly level.

LO12 Demonstrate self-direction, originality and capability in executing new investigations in the form of a substantial research project based on experimental knowledge and skills relevant to bioinformatics and communicate the findings of a final Project Report, Dissertation or scientific publication.
Curriculum

Postgraduate Certificate

<table>
<thead>
<tr>
<th>FHEQ Level</th>
<th>Module Title</th>
<th>Module Type</th>
<th>Credits</th>
<th>Study Period</th>
<th>Module Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Practical Skills in Research</td>
<td>Core</td>
<td>20</td>
<td>1</td>
<td>LIS7018-B</td>
</tr>
<tr>
<td>7</td>
<td>'Omics' Techniques in Biology and Healthcare</td>
<td>Core</td>
<td>20</td>
<td>1</td>
<td>BIS7019-B</td>
</tr>
<tr>
<td>7</td>
<td>Principles of Bioinformatics</td>
<td>Core</td>
<td>20</td>
<td>1</td>
<td>BIS7017-B</td>
</tr>
</tbody>
</table>

Students will be eligible to exit with the award of Postgraduate Certificate if they have successfully completed 60 credits and achieved the award learning outcomes.

Postgraduate Diploma

In addition to the above requirements for Postgraduate Certificate:

<table>
<thead>
<tr>
<th>FHEQ Level</th>
<th>Module Title</th>
<th>Module Type</th>
<th>Credits</th>
<th>Study Period</th>
<th>Module Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Research Project Preparation and Plan</td>
<td>Core</td>
<td>20</td>
<td>2</td>
<td>BIS7022-B</td>
</tr>
<tr>
<td>7</td>
<td>Research Project 1</td>
<td>Core</td>
<td>20</td>
<td>2</td>
<td>BIS7023-B</td>
</tr>
<tr>
<td>7</td>
<td>Advanced Bioinformatics</td>
<td>Core</td>
<td>20</td>
<td>2</td>
<td>BIS7018-B</td>
</tr>
</tbody>
</table>

Students will be eligible to exit with the award of Postgraduate Diploma if they have successfully completed at least 120 credits and achieved the award learning outcomes.

Degree of Master

In addition to the above requirements for Postgraduate Diploma:

<table>
<thead>
<tr>
<th>FHEQ Level</th>
<th>Module Title</th>
<th>Module Type</th>
<th>Credits</th>
<th>Study Period</th>
<th>Module Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Research Project 2</td>
<td>Core</td>
<td>60</td>
<td>3</td>
<td>BIS7025-E</td>
</tr>
</tbody>
</table>

Students will be eligible for the award of Degree of Master if they have successfully completed at least 180 credits and achieved the award learning outcomes.
Learning and Teaching Strategy

A wide variety of teaching methods, appropriate to the learning outcomes of the individual modules, are employed throughout the programme, and are supported by formative assessment where possible. The teaching methods are designed to encourage students to take increasing responsibility for their own learning as they progress through the course. In this way students are expected to develop the key attributes needed for life-long learning and continued professional development. Students are also supported by a designated Personal Academic Tutor to ensure that they are also able to develop and use their scientific skills and attributes in the world of work, particularly by making the appropriate career choices at the relevant times.

The programme content is taught using conventional teaching methods that include lectures, seminars, tutorials, laboratory classes, workshops and a research project. In addition, independent self-directed or problem-based learning may include interactive research case studies, peer and collaborative sessions, reflective practice and portfolio building. These may be supplemented with interactions with science professionals and tasks that are either work-based or linked to other placements.

Assessment Strategy

Assessments use a combination of unseen written examinations and a wide range of coursework elements such as laboratory reports, essays, online and computer-based assessments, data interpretation and analysis. This is also supplemented with assessment of communication skills in oral and poster communications during peer-reviewed and collaborative sessions. Together, these strategies are designed to evaluate a broad range of skills including the abilities to:

- Access and evaluate bioscience information from a variety of sources and comprehend biological phenomena at different organisational levels (from molecules through to organism systems).
- Communicate the underlying principles and methodologies, both orally and in writing, in a way that is organised and topical, and recognises the limits of the current state of knowledge.
- Demonstrate appropriate practical techniques and skills relevant to the biosciences; including data collection, analysis and interpretation of those data, and testing of hypotheses in a context that can be used to suggest new lines of future investigation.
- Execute and present an independent piece of hypothesis-driven work within a supported framework in which qualities such as time management, problem solving, and independence are evident.

These skills and abilities are assessed in a subject-specific manner to establish an understanding of the key concepts necessary to devise and evaluate suitable and relevant experimental methods for the investigation of relevant areas of bioinformatics. For example, the overarching programme design requires the successful completion of the key assessments associated with the core modules (e.g. LIS7018-B and BIS7022-B) that are designed to prepare students for an increasing level of autonomy and independence required to demonstrate the application of advanced research skills during the Research Projects 1 and 2 (BIS7023-B and BIS7025-E) and to demonstrate the achievement of skills described in PLO7 to PLO12 to develop independent researchers for the future.
Reassessment of any failed components of assessment will be carried out using a format that is similar to that of the original assessment. If, however, this is not possible, an alternative format may be used to examine the same Learning Outcomes e.g. items of assessment that need to be undertaken on an individual basis rather than as group work.

Assessment Regulations

This Programme conforms to the standard University Regulations which are available at the following link:

http://www.bradford.ac.uk/aqpo/ordinances-and-regulations/

Admission Requirements

The University welcomes applications from all potential students and most important in the decision to offer a place is our assessment of a candidate’s potential to benefit from their studies and of their ability to succeed on this particular programme. Consideration of applications will be based on a combination of formal academic qualifications and other relevant experience.

The standard entry requirements for the programme are as follows:

Normally, you would be expected to have gained an Honours degree in an appropriate biological sciences discipline with a minimum of a 2:2 or a similar qualification. For students from outside of the UK/EU you will be required to meet the current visa and entry requirements for study in the UK, and if your first language is not English you must also satisfy the University that you meet the International English Language Testing Service (IELTS) overall band of 6.0 with a minimum of 5.5 in all elements.

Applications are welcome from students with non-standard qualifications with significant relevant experience.

We are continually reviewing and developing our practices and policies to make the University more inclusive, but if you are disabled we may need to make some adjustments to make sure that you are not disadvantaged. We would advise you to contact the Programme Leader before you apply to discuss these.

Recognition of Prior Learning

If applicants have prior certificated learning or professional experience which may be equivalent to parts of this programme, the University has procedures to evaluate and recognise this learning in order to provide applicants with exemptions from specified modules or parts of the programme.

Minor Modification Schedule

<table>
<thead>
<tr>
<th>Version Number</th>
<th>Brief description of Modification</th>
<th>Date of Approval (Faculty Board)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>