

Module Details			
Module Title	Synthetic Chemistry for Medicinal Chemists		
Module Code	CFS7020-B		
Academic Year	2021/2		
Credits	20		
School	School of Chemistry and Biosciences		
FHEQ Level	FHEQ Level 7		

Contact Hours					
Туре	Hours				
Interactive Learning Objects	12				
Lectures	24				
Practical Classes or Workshops	2				
Directed Study	162				

Availability				
Occurrence	Location / Period			
BDA	University of Bradford / Semester 1			

Module Aims

This module will develop your knowledge of advanced organic chemistry and show you how organic synthesis is employed in the development of new drug leads. You will learn about some more advanced reactions, specifically those aimed at making molecules as single enantiomers.

Outline Syllabus

Strategies and tactics in design of synthetic routes: control, protection, activation and blocking techniques, chemical space considerations, availability of starting materials and exploitation of symmetry.

Retrosynthesis revisited: Simple disconnections leading to drug like molecules - specifically heterocyclic compounds and aromatics.

Alkylation of enolates and their equivalents, particularly enamines. Rearrangements as a means of constructing ring systems: Bifunctional compounds; 1,2, 1,3-, 1,4-, 1,5- and 1,6-di-CO disconnections.

Molecules as single enantiomers: the chiral pool; asymmetric and diastereoselective reactions, first generation transition metal catalysis, examples from enzyme mediated transformations, reagent control (e.g. Brown allylation), chiral auxiliaries (e.g. Evans) and organo-catalysis.

Applications: constraints of the industrial scale: process development, solvents, and reaction conditions, 'green' considerations, health and safety, economics, length of route, application of synthetic chemistry: to known drug molecules and APIs with discussion of developing a library of compounds.

Learning, Teaching and Assessment Strategy

The module uses a blended approach to support learning and achievement. Students will engage with a series of weekly online learning packages. These will include short videos that address key concepts, a set of structured activities (reading, online discussions etc.) that 'scaffold' the learning, and a range of formative tasks that generate feedback on progress. Online workshops and tutorials will also be used to support learning and monitor progress as students move through the curriculum.

The VLE will be used to provide access to online resources, lecture notes and external links to websites of interest.

Assessment 1: Worksheets over the course of the module - feedback will be given (LOs 1-4).

Assessment 2: Summative examination to cover the whole module (LOs 1-4).

Mode of Assessment					
Туре	Method	Description	Weighting		
Summative	Coursework - Written	Worksheets	40%		
Summative	Examination - Closed Book	Summative assessment: closed book exam (2 Hrs)	60%		

Reading List

To access the reading list for this module, please visit https://bradford.rl.talis.com/index.html

Please note:

This module descriptor has been published in advance of the academic year to which it applies. Every effort has been made to ensure that the information is accurate at the time of publication, but minor changes may occur given the interval between publishing and commencement of teaching. Upon commencement of the module, students will receive a handbook with further detail about the module and any changes will be discussed and/or communicated at this point.