Clinical Diagnostics

Module Code: MHT7014-B
Academic Year: 2018-19
Credit Rating: 20
School: Department of Biomedical and Electronics Engineering
Subject Area: Medical and Healthcare Technology
FHEQ Level: FHEQ Level 7 (Masters)

Pre-requisites:
Co-requisites:

Contact Hours

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>48</td>
</tr>
<tr>
<td>Tutorials</td>
<td>12</td>
</tr>
<tr>
<td>Laboratory</td>
<td>9</td>
</tr>
<tr>
<td>Directed Study</td>
<td>131</td>
</tr>
</tbody>
</table>

Availability Periods

<table>
<thead>
<tr>
<th>Occurrence</th>
<th>Location/Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDA</td>
<td>University of Bradford / Semester 2 (Feb - May)</td>
</tr>
</tbody>
</table>

Module Aims

This module aims to engender specialist knowledge and understanding of clinical signals measurements and analysis both in theory and in practice. It also aims to develop mathematical and software skills in relation to clinical signals and an understanding of the body as an electrical machine.

Outline Syllabus

The body as an electrical machine.
The physiological origin of electrical activity.
Electromyography (EMG). Electrical activity in the musculo-skeletal system. EMG Laboratory.
The electrocardiogram (ECG). Electrical activity of the heart. ECG Laboratory.
ECG as an inverse Thompson problem.
The electroencephalogram (EEG). Electrical activity in the brain. EEG Laboratory.
Temperature measurement.
Electrical measurement techniques.
Clinical data as non-linear time series.
Case study: separation of maternal and foetal ECG.

Module Learning Outcomes
On successful completion of this module, students will be able to...

1. Measure and analyse clinical signals from a diagnostic perspective
2. Describe the principles and techniques underlying the analysis
3. Understand the physiological basis and clinical relevance of various signal types
4. Critical evaluate data in a clinical context
5. Analyse and critically evaluate the clinical significance of electrical signals arising from physiological processes
6. Solve problems of clinical data analysis in a coherent and systematic manner.

Learning, Teaching and Assessment Strategy
The factual basis, concepts and principles of the subject are introduced through interactive lectures in which routine analysis will be demonstrated.
The material is reinforced through whole-group laboratory sessions in which actual clinical practice of clinical diagnostics is undertaken with students acting as both practitioners and as patients. Written reflection of the laboratory sessions enables students to consolidate what they have learned.
In the remaining time, students have the opportunity to reflect on, explore and extend their knowledge and understanding and to prepare for the formal assessment that assesses their understanding of the subject.
100% Coursework portfolio of lab work, results and analysis together with an individual mini-project.

Mode of Assessment

<table>
<thead>
<tr>
<th>Type</th>
<th>Method</th>
<th>Description</th>
<th>Length</th>
<th>Weighting</th>
<th>Final Assess'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summative</td>
<td>Coursework</td>
<td>Mini project on an aspect of clinical diagnostics approved by the lecturer</td>
<td></td>
<td>30%</td>
<td>No</td>
</tr>
<tr>
<td>Summative</td>
<td>Coursework</td>
<td>Report including results, analysis and discussion on the lab sessions</td>
<td>70%</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

Legacy Code (if applicable)

Reading List
To view Reading List, please go to [rebus:list](#).