Vehicle Dynamics and Control

Module Code: MAE6015-B
Academic Year: 2018-19
Credit Rating: 20
School: Department of Mechanical and Energy Systems Engineering
Subject Area: Mechanical and Automotive Engineering
FHEQ Level: FHEQ Level 6
Module Leader: Dr David Bryant

Additional Tutors:

Pre-requisites:
Co-requisites:

Contact Hours

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>48</td>
</tr>
<tr>
<td>Tutorials</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory</td>
<td>18</td>
</tr>
<tr>
<td>Directed Study</td>
<td>132</td>
</tr>
</tbody>
</table>

Availability Periods

<table>
<thead>
<tr>
<th>Occurrence</th>
<th>Location/Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDA</td>
<td>University of Bradford / Academic Year (Sept - May)</td>
</tr>
</tbody>
</table>

Module Aims

Provide detailed study of vehicle dynamics using specialist CAE tools to understand the effect of key ride and handling performance parameters on vehicle stability.
Study and analyse vehicle stability management and driver assisted control systems.
Learn how to use CAE tools to design, simulate and analyse vehicle ride, handling and control.
Outline Syllabus


Module Learning Outcomes

On successful completion of this module, students will be able to...

1. give an account of the various vehicle dynamics characteristics and analyse vehicle dynamics behaviour using fundamental dynamics principles; critically evaluate the performance of various vehicle management and control systems.

2. relate analytical and mathematical representation to the design, modelling and analysis of vehicle dynamics behaviour; use CAE tools to assess vehicle ride, handling and control systems.

3. work as a member of a team; analyse various transportation systems dynamics; use dynamics software to design and analyse a variety of dynamic systems.

Learning, Teaching and Assessment Strategy

The scientific basis of the subject is established in lectures supported by case studies, examples, analyses and demonstrations of the dynamics and control systems used in vehicles. The practical classes will provide opportunity to learn and test the methods using CAE tools. Technical knowledge is consolidated by hands-on project work to simulate and analyse dynamics and control systems and this form the assessment for this module. Supplementary assessment is to repair deficiency in the original assessment.

Mode of Assessment

<table>
<thead>
<tr>
<th>Type</th>
<th>Method</th>
<th>Description</th>
<th>Length</th>
<th>Weighting</th>
<th>Final Assess'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summative</td>
<td>Coursework</td>
<td>Group project: Vehicle Dynamics and Control Project using CAE</td>
<td>60%</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>
Summative Classroom test

Class test - Semester 2 2 hours 40% Yes

Legacy Code (if applicable)
ENG3316L

Reading List
To view Reading List, please go to rebus:list.