Manufacturing Systems Engineering

Module Code: MAE6011-B
Academic Year: 2018-19
Credit Rating: 20
School: Department of Mechanical and Energy Systems Engineering
Subject Area: Mechanical and Automotive Engineering
FHEQ Level: FHEQ Level 6
Module Leader: Dr Jose Munive Hernandez

Additional Tutors:

Pre-requisites:
Co-requisites:

Contact Hours

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>24</td>
</tr>
<tr>
<td>Tutorials</td>
<td>20</td>
</tr>
<tr>
<td>Directed Study</td>
<td>156</td>
</tr>
</tbody>
</table>

Availability Periods

<table>
<thead>
<tr>
<th>Occurrence</th>
<th>Location/Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDA</td>
<td>University of Bradford / Semester 2 (Feb - May)</td>
</tr>
</tbody>
</table>

Module Aims

To study the concepts of manufacturing systems, engineering and current challenges, including PUSH/ PULL (JIT/lean manufacturing) methods of planning & control of manufacturing systems. Thereafter, to study the concepts of discrete-event modelling and simulation in the context of these manufacturing systems. To develop modelling approaches and simulation models that address a wide variety of manufacturing environments such as FMS, Cellular and Job Shop systems, Flow and Assembly lines.
Outline Syllabus


Study of Manufacturing Resource Planning (MRPII) PUSH systems: Bill of Materials (BOM), Master Production Schedule (MPS), Materials Requirements Planning (MRP), Rough Cut Capacity Planning (RCCP), Capacity Requirements Planning (CRP), Order Release and Scheduling (OR/OS).

Concept of modelling and simulation. Types of simulation models, definitions of event, activity, entity, process, attributes/etc used in discrete event simulation. Introduction to statistics, probabilities, confidence intervals/confidence levels, probability distributions. Basic modelling concepts and techniques, through building simulation models in classroom lecture/tutorial. The use of statistical techniques as part of the simulation process.

Module Learning Outcomes

On successful completion of this module, students will be able to...

1. Analyse current challenges for manufacturing systems engineers.
2. Analyse PULL (JIT/LEAN) and PUSH (MRPII) manufacturing systems.
3. Apply simulation approaches by creating simulation models for a variety of manufacturing environments and applying statistical analysis.
4. Demonstrate teamwork, leadership and change management skills through a simulation group project.

Learning, Teaching and Assessment Strategy

The module is taught through a series of lectures supported by reading materials and videos. The learning of modelling and simulation is delivered through tutorial sessions with hands on experience building simulation models in the classroom.

Mode of Assessment

<table>
<thead>
<tr>
<th>Type</th>
<th>Method</th>
<th>Description</th>
<th>Length</th>
<th>Weighting</th>
<th>Final Assess'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summative</td>
<td>Coursework</td>
<td>Group coursework to analyse and simulate a manufacturing simulation</td>
<td>0-2000 words</td>
<td>50%</td>
<td>No</td>
</tr>
<tr>
<td>Summative</td>
<td>Coursework</td>
<td>Analysing a current manufacturing challenge</td>
<td>0-2000 words</td>
<td>50%</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Legacy Code (if applicable)
ENG3302D

Reading List
To view Reading List, please go to rebus:list.