Advanced Engineering Design

Module Code: MAE6009-B
Academic Year: 2018-19
Credit Rating: 20
School: Department of Mechanical and Energy Systems Engineering
Subject Area: Mechanical and Automotive Engineering
FHEQ Level: FHEQ Level 6
Module Leader: Dr Christopher Wright

Additional Tutors:

Pre-requisites:
Co-requisites:

Contact Hours

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>12</td>
</tr>
<tr>
<td>Tutorials</td>
<td>24</td>
</tr>
<tr>
<td>Directed Study</td>
<td>164</td>
</tr>
</tbody>
</table>

Availability Periods

<table>
<thead>
<tr>
<th>Occurrence</th>
<th>Location/Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSA</td>
<td>Management Development Institute of Singapore (MDIS) / Academic</td>
</tr>
<tr>
<td>BDA</td>
<td>University of Bradford / Academic Year (Sept - May)</td>
</tr>
<tr>
<td>BDB</td>
<td>University of Bradford / Academic Year (Sept - May)</td>
</tr>
</tbody>
</table>

Module Aims

The aim of this module is to develop both technical deepening and critical understanding of mechanical engineering design within a holistic sustainable product development context.

Outline Syllabus
1. Product Definition
Needs and Requirements Analysis, Developing a product design specification (legislative and sustainability, consideration of cost and cost constraints, patents and intellectual property considerations in engineering design), Product cycles.

2. Concept Design
Requirements cascade in systems thinking, Concept generation and selection (creative thinking methodologies), Design for manufacture and assembly considerations, Manufacturing process selection.

3. Details Design/Embodiment
Requirements cascade to subsystem, Engineering design analysis and synthesis, detailed consideration of bearing types, selection and life. Belts, chains and pulley types, their design and selection. Coupling selection. Clutches and brakes. Gear design and selection, shaft design, 3D solid modelling, assemblies. 2D working drawings.

4. Design Verification and Product Validation
Approaches to design verification and validation, consideration of robustness in design, Evaluation of sustainability and ethical issues in product design, Risk assessment (FMEA) and management in design.

Module Learning Outcomes
On successful completion of this module, students will be able to...

1.1 apply a holistic approach to product development. 1.2 Select specific design elements to meet a design requirement. 1.3 use selection methodologies in system design.

2.1 Show your ability to apply tools for concept analysis and selection. 2.2 Show your ability in designing and validating system assemblies and mechanisms.

3.1 Use problem solving techniques, 3.2 Present technical information in a concise written format and use CAD to communicate engineering design data

Learning, Teaching and Assessment Strategy
Theory is developed in key lectures delivered by relevant experts and practiced in tutorials though individual and team-based activities. The VLE is used to provide teaching materials and direct students towards useful websites. The ability to select design elements is assessed by an individual in-class test whilst the ability to use design methodologies to integrate design elements to solve an open-ended design problem is assessed by a group project. Oral feedback will be provided on a continuous basis through regular clinics. Written feedback will be given via assessment of group coursework. Assessment for this module will take the form of an individual class test and group coursework of 4000 words equivalent per student that will test all of the learning outcomes. The students will complete a self-assessment of individual contribution to teamwork, which is used to adjust the individual final mark based on the team report. The in-class test will assess LOs 1.2, 3.1 and the group project will assess LOS 1.1, 1.2, 2.1, 2.2, 3.1, 3.2, 3.3. Supplementary assessment: Repair deficiencies in the original submission / re-presentation of individual
student's contribution to the group project.

Mode of Assessment

<table>
<thead>
<tr>
<th>Type</th>
<th>Method</th>
<th>Description</th>
<th>Length</th>
<th>Weighting</th>
<th>Final Assess'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summative</td>
<td>Coursework</td>
<td>Classroom based assignment</td>
<td>0 hours</td>
<td>30%</td>
<td>No</td>
</tr>
<tr>
<td>Summative</td>
<td>Coursework</td>
<td>Group design project portfolio (4000 words</td>
<td>0 hours</td>
<td>70%</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>equivalent per student)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legacy Code (if applicable)
ENG3106L

Reading List
To view Reading List, please go to rebus:list.