Advanced Geotechnics

Module Code: CSE7009-B
Academic Year: 2018-19
Credit Rating: 20
School: Department of Civil and Structural Engineering
Subject Area: Civil and Structural Engineering
FHEQ Level: FHEQ Level 7 (Masters)

Pre-requisites:
Co-requisites:

Contact Hours

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>36</td>
</tr>
<tr>
<td>Seminar</td>
<td>6</td>
</tr>
<tr>
<td>Tutorials</td>
<td>6</td>
</tr>
<tr>
<td>Directed Study</td>
<td>152</td>
</tr>
</tbody>
</table>

Availability Periods

<table>
<thead>
<tr>
<th>Occurrence</th>
<th>Location/Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDA</td>
<td>University of Bradford / Semester 1 (Sep - Jan)</td>
</tr>
</tbody>
</table>

Module Aims

To extend the application of the fundamental concepts and principles of soil behaviour introduced in Soil Mechanics and Geotechnical and Civil Engineering Design modules, with particular emphasis on analysis and design of dewatering schemes, soil improvement techniques and temporary ground support systems. To develop solutions to advanced geotechnical engineering problems by a process of analysis and validation using specialist software where appropriate.

Outline Syllabus

Module Learning Outcomes

On successful completion of this module, students will be able to...

1. Critically evaluate soil behaviour in the analysis and design of advanced geotechnical problems.
2. Apply geotechnical quantitative methods to analyse and design earthworks.
3. Use where appropriate software to solve and design ground support problems.
4. Use fundamental soil parameters in design and analysis of ground water flow, soil improvement, reinforced slopes and soils.
5. Demonstrate systematic application of scientific methods for creative problem solving in the geotechnical context.
6. Interpret data from a variety of sources and present a technical solution to problems.

Learning, Teaching and Assessment Strategy

The essential concepts and principles are introduced and developed in the formal lectures. Tutorial sessions provide the basis for further in-depth discussion, application, critical analysis and design.

The formal lectures include several worked examples in which students apply the theory and receive formative feedback. Deeper understanding is then acquired during tutorial classes in which students practice the application of concepts and theories to solve systematically advanced geotechnical design problems.

Oral feedback is given during the seminar sessions to assist and guide students to effectively address the geotechnical coursework challenge.

Directed time is for students to consolidate and enhance their learning through further reading and practice of a range of practical problems from the recommended reading list. Assessment is based on a formal exam and team-based course work which takes the form of report. The formal examination will assess all the learning outcomes expressed in the descriptor. The technical report will assess the application of practical skills and broadening of knowledge relevant to the selected geotechnical engineering problem as stated by Learning Outcomes 5 and 6.

Mode of Assessment
<table>
<thead>
<tr>
<th>Type</th>
<th>Method</th>
<th>Description</th>
<th>Length</th>
<th>Weighting</th>
<th>Final Assess'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Referral</td>
<td>Examination - closed book</td>
<td>Supplementary examination</td>
<td>100%</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Summative</td>
<td>Examination - closed book</td>
<td>Examination - closed book</td>
<td>3 hours</td>
<td>70%</td>
<td>No</td>
</tr>
<tr>
<td>Summative</td>
<td>Coursework</td>
<td>Technical report</td>
<td>30%</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

Legacy Code (if applicable)

ENG4304D

Reading List

To view Reading List, please go to rebus:list.