Food and Pharmaceutical Process Engineering

Module Code: CPE7004-B
Academic Year: 2018-19
Credit Rating: 20
School: Department of Chemical Engineering
Subject Area: Chemical and Process Engineering
FHEQ Level: FHEQ Level 7 (Masters)

Pre-requisites:
Co-requisites:

Contact Hours

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent Study</td>
<td>150</td>
</tr>
<tr>
<td>Lectures</td>
<td>34</td>
</tr>
<tr>
<td>Tutorials</td>
<td>12</td>
</tr>
<tr>
<td>Laboratory</td>
<td>4</td>
</tr>
</tbody>
</table>

Availability Periods

<table>
<thead>
<tr>
<th>Occurrence</th>
<th>Location/Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDA</td>
<td>University of Bradford / Semester 2 (Feb - May)</td>
</tr>
</tbody>
</table>

Module Aims

Outline Syllabus

1. Mixing in the Process Industry: Introduction
2. Mixing in Agitated Vessels: Circulation & Intensity of Circulation, Power Consumption, Mixing Time
3. Mixing in Agitated Vessels: Extension to real non Newtonian fluids.
4. Crystallisation and Crystallisers
5. Drying of pharmaceuticals
6. Size reduction and size enlargement in pharmaceutical industry
7. Size enlargement (dry, wet & melt granulation), extrusion spheronisation
8. Polymeric solid dispersions & hot melt extrusion
9. Powder technology and tabletting
10. Processing Techniques in the Food Industry (e.g. Freezing, Drying, Moisture Control, Thermal, Membrane Separation).
11. Food Processing Units and Process Modelling using gPROMS (process modelling tools).
12. Design and operation optimisation of unit operations applied in food processes

Module Learning Outcomes

On successful completion of this module, students will be able to...

1. Specify quantitatively the characteristics of mixing, fluid flow, drying, filtration, crystallisation;
2. Develop critical understanding of different unit operations applied to food and pharmaceutical processes and develop problem solving skills.
3. Develop skills in the use of software in food process modelling, simulation and optimisation.

Learning, Teaching and Assessment Strategy

The topics are delivered through interactive lectures; group discussions; tutorials involving hand calculations; computer labs developing process models for unit operation used in food processing. Interactive sessions and group discussions are activated via directed learning on the topics. The computer lab sessions are interactive and are supported by the tutor and the students.

Coursework and Formal Examination.

Coursework: Work individually or in a group (a) to develop food process model and simulate using a modelling software gPROMS (b) to research and write a critical report on the design and operation optimisation of given food processing unit operation

Mode of Assessment

<table>
<thead>
<tr>
<th>Type</th>
<th>Method</th>
<th>Description</th>
<th>Length</th>
<th>Weighting</th>
<th>Final Assess'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summative</td>
<td>Examination - closed book</td>
<td>Examination - closed book. Final Assessment</td>
<td>2 hours</td>
<td>75%</td>
<td>Yes</td>
</tr>
<tr>
<td>Summative</td>
<td>Coursework</td>
<td>Group/Individual Report 3000 words per student</td>
<td>-3000 words</td>
<td>25%</td>
<td>No</td>
</tr>
</tbody>
</table>

Legacy Code (if applicable)

ENG4114D
Reading List
To view Reading List, please go to rebus:list.