Introduction to Computing

Module Code: COS3003-B
Academic Year: 2018-19
Credit Rating: 20
School: Department of Computer Science
Subject Area: Computer Science
FHEQ Level: FHEQ Level 3

Pre-requisites:
Co-requisites:

Contact Hours

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>12</td>
</tr>
<tr>
<td>Laboratory</td>
<td>12</td>
</tr>
<tr>
<td>Directed Study</td>
<td>176</td>
</tr>
</tbody>
</table>

Availability Periods

<table>
<thead>
<tr>
<th>Occurrence</th>
<th>Location/Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDA</td>
<td>University of Bradford / Semester 2 (Feb - May)</td>
</tr>
</tbody>
</table>

Module Aims

To introduce foundational concepts relevant to the field of Computer Science
To develop practical computing skills through laboratory exercises and/or case studies

Outline Syllabus

Transferable and technical skills/competencies expected from a computing professional
Foundational mathematical concepts underpinning computer science
Introductory programming and algorithmic thinking
Design and engineering for the creation of software systems
Hardware and software of modern computer systems
Technologies and languages underpinning the Internet
Module Learning Outcomes

On successful completion of this module, students will be able to...

1. Describe and use basic computing terminology and concepts
2. Demonstrate understanding of theoretical concepts that underpin the discipline of computing
3. Apply practical computing skills to a variety of real world application areas

Learning, Teaching and Assessment Strategy

The module is taught using a mixture of lectures that deliver theoretical concepts and terminology, as well as practical lab sessions that build upon I to develop practical skills in a variety of computing topics.

The module is assessed through coursework delivered part way through the module to facilitate timely feedback on student progress and attainment, and a closed book examination assessing understanding of theoretical concepts. Formative feedback on student work and attainment is given through weekly lab sessions where tutors will work closely with students on weekly practical exercises, allowing staff to guide student learning in a real-time manner.

Mode of Assessment

<table>
<thead>
<tr>
<th>Type</th>
<th>Method</th>
<th>Description</th>
<th>Length</th>
<th>Weighting</th>
<th>Final Assess'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summative</td>
<td>Examination - closed book</td>
<td>An examination requiring the demonstration of knowledge and understanding of theoretical concepts relevant to computer science</td>
<td>2 hours</td>
<td>70%</td>
<td>Yes</td>
</tr>
<tr>
<td>Summative</td>
<td>Coursework</td>
<td>An exercise involving the design and/or development of computer software</td>
<td>1200 words or equivalent</td>
<td>30%</td>
<td>No</td>
</tr>
</tbody>
</table>

Legacy Code (if applicable)

NC-0003D
Reading List
To view Reading List, please go to rebus:list.