Module Descriptor

Practical Chemistry 1

Module Code: CFS4026-D
Academic Year: 2018-19
Credit Rating: 40
School: School of Chemistry and Biosciences
Subject Area: Chemistry and Forensic Science (ceases 2016)
FHEQ Level: FHEQ Level 4

Pre-requisites:
Co-requisites:

Contact Hours

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>12</td>
</tr>
<tr>
<td>Tutorials</td>
<td>4</td>
</tr>
<tr>
<td>Laboratory</td>
<td>168</td>
</tr>
<tr>
<td>Directed Study</td>
<td>216</td>
</tr>
</tbody>
</table>

Availability Periods

<table>
<thead>
<tr>
<th>Occurrence</th>
<th>Location/Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDA</td>
<td>University of Bradford / Academic Year (Sept - May)</td>
</tr>
</tbody>
</table>

Module Aims

This module will introduce the fundamental techniques required to work safely and efficiently in the laboratory. You will develop your skills in the safe handling of chemicals, in making accurate qualitative observations, quantitatively analysing compounds prepared in the laboratory, and in reporting and interpreting experimental results. You will learn about spectroscopic techniques and use these methods in the analysis of what you synthesise in the lab. You will use measurements of physical parameters to investigate aspects of physical chemistry.
Through preparing laboratory reports you will be introduced to the standard formats and drawing packages used by professional chemists to share their results. You will be tutored in the basic numeracy skills necessary to study a degree in the chemical sciences, and will apply these skills to your experimental work. The principles of Green Chemistry will be introduced, and you will learn how to assess the environmental impact of your laboratory work.

**Outline Syllabus**

Chemical hazards and risk assessments, sources of safety data, on-line databases, definitions and safety terms, exposure limits, legislation, CHIP, COSHH, REACH.


Green chemistry - Definitions & metrics used, the tools used to assess the environmental impact of chemical processes.


Laboratory techniques in separating organic mixtures: Elementary organic synthesis. Spectroscopic characterisation of organic & inorganic compounds.

Professional Development: Presenting information effectively, monitoring & evaluating results, drawing conclusions, chemical reports, chemical structure drawing.

**Module Learning Outcomes**

*On successful completion of this module, students will be able to...*

1. Describe types of chemical hazards.
10. Identify and quantify experimental errors.
11. Measure physical and chemical properties of some compounds & interpret analytical data.
12. Purify and prepare some organic and inorganic compounds for spectroscopic analysis.
13. Assemble molecular structure diagrams and mechanistic reaction sequences using structure drawing software.
14. Tabulate results and present charts from manipulation of data in a spreadsheet.
15. Interpret infrared, ultraviolet, 1H NMR and mass spectra of simple compounds & combine the information gained from these spectra to deduce structures.
Quantify and report errors in numerical data-report writing & data handling skills; operate effectively as part of group.

Write experimental reports.

Use IT to prepare professional chemical documentation.

Use a range of information to analyse data & solve problems.

State how to minimise risks in using hazardous substances; explain, with examples, how practical work reinforces theoretical studies; identify roles in group situations.

Describe principles and methods, and carry out experiments in, organic purification and organic and main group synthesis.

Carry out measurement of thermodynamic and kinetic properties.

Quantify and describe the environmental impact of experiments using Green Chemistry metrics.

Present laboratory reports in the appropriate format.

Perform basic chemical operations & carry out some measurements in practical organic, inorganic & physical chemistry;

Record experimental lab work in the appropriate format.

Carry out simple COSHH assessments.

**Learning, Teaching and Assessment Strategy**

Laboratory-based work will include staff-led demonstration of practical and manipulative skills at the bench and supervision of students’ experimental work. Pre-laboratory workshops will be provided for each experiment to familiarise students with the concepts and procedures, the post lab workshops will allow students to reflect on the results and their significance. Teaching of health and safety and laboratory skills will be delivered in workshops. Laboratory skills will be taught and practised in laboratory sessions. Students will receive feedback in the form of marked laboratory reports, review of laboratory records and orally in seminars. Data analysis and mathematics will be taught and practised through problem-based learning and workshops. Workshops and seminars will be used to teach the fundamental spectroscopic techniques used in the lab, and to give instruction in the use of specialist software for the preparation of laboratory reports.

**Mode of Assessment**

<table>
<thead>
<tr>
<th>Type</th>
<th>Method</th>
<th>Description</th>
<th>Length</th>
<th>Weighting</th>
<th>Final Assess’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summative</td>
<td>Examination</td>
<td>Closed book maths exam and data handling exercise</td>
<td>1.5 hours</td>
<td>30%</td>
<td>Yes</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>-------------------------------------------------</td>
<td>-----------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Summative</td>
<td>Coursework</td>
<td>Continuous summative assessment of practical work and reports (6000 words)</td>
<td>-6000 words</td>
<td>70%</td>
<td>No</td>
</tr>
</tbody>
</table>

**Legacy Code (if applicable)**
CT-1019K

**Reading List**
To view Reading List, please go to [rebus:list](#).