Module Descriptor

Scientific Frameworks

Module Code: ARC4013-B
Academic Year: 2018-19
Credit Rating: 20
School: School of Archaeological and Forensic Sciences
Subject Area: Archaeology
FHEQ Level: FHEQ Level 4

Pre-requisites:
Co-requisites:

Contact Hours

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>24</td>
</tr>
<tr>
<td>Practical classes and</td>
<td>16</td>
</tr>
<tr>
<td>Directed Study</td>
<td>160</td>
</tr>
</tbody>
</table>

Availability Periods

<table>
<thead>
<tr>
<th>Occurrence</th>
<th>Location/Period</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>University of Bradford / Semester 2 (Feb - May)</td>
</tr>
</tbody>
</table>

Module Aims

This module is intended to give students an introduction to scientific principles and an understanding of the relevance of a range of applications of scientific techniques within archaeology and forensic anthropology.

Outline Syllabus

Introduction to the philosophical background of science and the scientific method. Scientific principles including atomic structure, stable and radioactive isotopes, trace elements, environmental measurements (pH, Eh equilibria), electricity and magnetism, biological molecules (lipids, proteins, DNA)

The principles, applications and limitations of scientific techniques in a range of key thematic areas which would typically include chronology and dating, human diet and
mobility, provenance, materials analysis, prospection, palaeoenvironmental indicators
All areas illustrated with case studies of the application of science to archaeology and forensic anthropology, including recent relevant examples.

Module Learning Outcomes

On successful completion of this module, students will be able to...

1. Describe the underlying scientific principles behind a range of research areas in modern archaeological science and forensic anthropology.

2. Discuss the appropriateness of techniques in particular archaeological and forensic circumstances.

3. Recognise and reproduce scientific terminology, basic scientific formulae and calculations.

4. Identify scientific methods, demonstrate analytical, numerical and problem solving skills and display critical writing skills.

Learning, Teaching and Assessment Strategy

Lectures will be used to introduce key principles and these will be supplemented by structured workshops. Detailed archaeological and forensic case studies will be used to contextualise the principles discussed. Assessment comprises a worksheet which focuses on problem-solving and application, and an exam which tests knowledge and understanding of basic principles. Past questions and model answers provided on the VLE for formative self-assessment. During directed study hours students are expected to undertake reading to consolidate and expand on the content of formal taught sessions; research and prepare for assessments; revise material from formal taught sessions; and undertake specific elements of reading as directed.

Mode of Assessment

<table>
<thead>
<tr>
<th>Type</th>
<th>Method</th>
<th>Description</th>
<th>Length</th>
<th>Weighting</th>
<th>Final Assess'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summative</td>
<td>Examination - closed book</td>
<td>Exam</td>
<td>2 hours</td>
<td>50%</td>
<td>Yes</td>
</tr>
<tr>
<td>Summative</td>
<td>Coursework</td>
<td>Worksheet</td>
<td>0-2000 words</td>
<td>50%</td>
<td>No</td>
</tr>
</tbody>
</table>

Legacy Code (if applicable)

AR-4312D

Reading List
To view Reading List, please go to rebus:list.